Semi-Supervised Multi-Label Learning with Incomplete Labels

نویسندگان

  • Feipeng Zhao
  • Yuhong Guo
چکیده

The problem of incomplete labels is frequently encountered in many application domains where the training labels are obtained via crowd-sourcing. The label incompleteness significantly increases the difficulty of acquiring accurate multi-label prediction models. In this paper, we propose a novel semi-supervised multi-label method that integrates low-rank label matrix recovery into the manifold regularized vector-valued prediction framework to address multi-label learning with incomplete labels. The proposed method is formulated as a convex but non-smooth joint optimization problem over the latent label matrix and the prediction model parameters. We then develop a fast proximal gradient descent with continuation algorithm to solve it for a global optimal solution. The efficacy of the proposed approach is demonstrated on multiple multi-label datasets, comparing to related methods that handle incomplete labels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Multi-label Learning Algorithm Using Dependency Among Labels

In this paper, we present a semi-supervised algorithm for multi-label learning by exploring the relationship among labels. Based on the accuracy, we determine the classification order for labels, a list of classifiers is trained by this order, with each classifier being trained by using the outputs of the previous classifiers in the list as additional input features. Experiments on three multi-...

متن کامل

Bidirectional Semi-supervised Learning with Graphs

We present a machine learning task, which we call bidirectional semi-supervised learning, where label-only samples are given as well as labeled and unlabeled samples. A label-only sample contains the label information of the sample but not the feature information. Then, we propose a simple and effective graph-based method for bidirectional semisupervised learning in multi-label classification. ...

متن کامل

Convex and scalable weakly labeled SVMs

In this paper, we study the problem of learning from weakly labeled data, where labels of the training examples are incomplete. This includes, for example, (i) semi-supervised learning where labels are partially known; (ii) multi-instance learning where labels are implicitly known; and (iii) clustering where labels are completely unknown. Unlike supervised learning, learning with weak labels in...

متن کامل

Multi Label Spatial Semi Supervised Classification using Spatial Associative Rule Mining and Evolutionary Algorithms

Multi-label spatial classification based on association rules with multi objective genetic algorithms (MOGA) enriched by semi supervised learning is proposed in this paper. It is to deal with multiple class labels problem. In this paper we adapt problem transformation for the multi label classification. We use hybrid evolutionary algorithm for the optimization in the generation of spatial assoc...

متن کامل

READER: Robust Semi-Supervised Multi-Label Dimension Reduction

Multi-label classification is an appealing and challenging supervised learning problem, where multiple labels, rather than a single label, are associated with an unseen test instance. To remove possible noises in labels and features of high-dimensionality, multi-label dimension reduction has attracted more and more attentions in recent years. The existing methods usually suffer from several pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015